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CONCERNING METRIZATION AND SEPARATION
IN NORMAL, SEPARABLE MOORE SPACES

D. Reginald Traylor

Recently, [3] E. E. Grace and R. W. Heath raised a question which is

stated below as Conjecture A.

Conjecture A: Suppose that S is a connected, normal Moore space such that
S contains no cut points and it is true that if each of P and Q is a point
of S and R is a region containing P then some separable, closed, connected

subset N of R separates P from Q in S. Then S is separable.

The purpose of this note is to answer Conjecture A in the negative,
provided there exists a normal, separable, nonmetrizable Moore space. It
follows that, should Conjecture A be found true, it thus would remove the
condition of the continuum hypothesis from Jones' result ({7], Theorem 5),

X U
that each normal, separable Moore space is metrizable, provided 2 °< 2¢ %

For definitions and results related to the question of metrization of
normal Moore spaces, refer to ([1], (2], [3], [41, [51, [e6], [7], [8], [9],

[10]).

The following lemmas prove helpful in describing the construction of
a space which denies Conjecture A. There is much reliance on the methods
which were employed in ([2], Theorem 1), ({9], Theorem 3 and Theorem 7),
and ([10], Theorem 4). No proof of Lemma 1 is included here, as it only

states formally a property of E3.

Lemma 1. There exist, in E3, a countably infinite discrete point set K
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and a collection G of mutually exclusive arcs such that

i) if each of x and y is a point of K some arc in G has x as one
end point and y as the other,
ii) each arc in G has its end points in K, and

iii) if g is an arc in G, then g contains no limit point of G*-g.

Lemma 2. If there exists a normal, separable, nonmetrizable Moore space
(S,R) then there exists one, say (S',Q'), such that S' is a subset of E3

and (S8',Q') is locally compact.

Proof. Denote by (S,2) a normal, separable, nonmetrizable Moore space.
There exists [7, Lemma C] an uncountable subset N of S with no limit point
and a countable dense subset L of S - N. If s =1 + N, let (SO,QO) denote

the subspace of (S,R) induced by the relative topology.

If x is a point of N, denote by P x.2%° "+ @ sequence of points of
H]

x,l’P
L which converges, in the q° sense, sequentially to x. In [2, Theorem 2]
g q

it is established that there exists a space (Sl,Ql) with the following

properties:

ii) Ql is the topology induced by the following definition of region:
The point set R is a region if and only if either
(a) for some point P of L, R is the degenerate set whose only
point is P, or
(b) for some point x of N and some integer K, R is the set
to which p belongs if and only if P = x or P = P for
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some j > k, and



iii) (Sl,Ql) is normal, separable, locally compact, nonmetrizable,

and no region has boundary.

If Gi denotes the collection to which the region R belongs if and
only if R is a degenerate region, or, for some point x of N and some pos-

itive integer i > n, R = x + P, then'{Gl}Oo gives a development for
& - L X, n'n=1

j=i ™
(Sl’gl) .
Denote by K the subset of E3and by G the collection of arcs described
in Lemma 1. There exists a reversible transformation T from K onto L.
Let G' denote the subcollection of G to which the arc [a,b] belongs if and

only if there exist a point x of N, points y and z of K, and a positive

integer i such that T(y) =P ., T(z) =P

% 1 X.i+1® and a =y, b =z, or
b 9’

a=2,b=y. Denote by M an uncountable subset of E3 such that M = N,
and M is a subset of E3 -(K + G'*). It is no restriction to assume that
T has been extended such that T is a reversible transformation from M + K

to N+ L with T(M) = N and T(K) = L.

Let S' = M + K and consider the space (S',Q') where Q' is the topology
induced by the following definition of region: The statement that the
1

point set R is a region of Gé means that there exists a region g of Gn

such that T(g)

R. Clearly, (S',Q') is topologically equivalent to

(Sl,Ql) and thus satisfies the lemma.

Now let 82 = §8' + G'* and consider the space (SZ,QZ) where Qz is the

topology induced by the following definition of region: The statement that




the point set R is a region of Gi means that either

i) there exists a region g of G; such that P belongs to R if and
only if either
(a) P is a point of g, or
(b) there exists an arc [a,b] of G which has both end points
in g and P is a point of [a,b], or
(¢) there exists an arc [a,b] of G such that a is in g, b is
not in g and P is'some point of that component of [a,b]
which contains a and (in E3) each of whose points is less
than 1/n from a, or
(d) there exists an arc [a,b] of G such that g contains b but
not a and P is some point of that component of [a,b] which
contains b and (in E3) each of whose points is less than
1/n from b, or
ii) there exists an arc [a,b] of G which contains a subsegment g

whose length (in E3) is less than 1/n and R = g.

It follows, as in [9, Theorem 3], that (82,92) with the development

2, , .
{Gn} =] 18 2 normal, separable, arcwise connected, locally connected,

nonmetrizable space. The following lemma is thus established.

Lemma 3. If there exists a normal, separable, nonmetrizable Moore space

then there exists one, say (SZ,QZ), such that S2 is a subset of E3 and

(SZ,QZ) is normal, separable, arcwise connected, locally connected and

nonmetrizable.

Lemma 4. If there exists a normal, separable, nonmetrizable Moore space



(S,0) and N is a discrete uncountable subset of S then there exists a
normal, separable, arcwise connected, locally connected, nonmetrizable
Moore space (SZ,QZ) which is embedded in a normal, arcwise connected,
locally connected, nonmetrizable Moore space (83,93) which contains a

collection H of mutually exclusive domains such that H = N.

Proof. Consider (SZ’QZ) of Lemma 3. There exists a subset M of 82 which

is discrete and uncountable. Denote by Q a point of E3 and by H a collec-

tion of mutually exclusive horizontal line segments of E3 such that (H* + Q)

does not intersect 82 in E3 and H = M

There exists a reversible transfor-

mation T from H onto M.

Let S3 = 82 + H* + Q and consider the space (S3,Q3) where 93 is the
topology induced by the following definition of region: The statement

that the point set R is a region of Gi means that either

i) there is a region g of Gi such that g does not intersect M and
R=g, or
ii) there is a region g of Gi which contains a point x of M such that
the point P belongs to R if and only if P is.a point of g or, if
(a,b) is the element of H such that T[(a,b)] = x, then P is a
point of (a,b) less than 1/n (in E3) from a, or
iii) there exists a segment (a,b) of H and a subsegment (c,d) of
(a,b) such that the length of (c,d), in E3, is less than 1/n
and R = (c,d), or
iv) R is the set to which P belongs if and only if P = Q or there

exists a segment (a,b) of H such that P is a point of (a,b)



which is less than 1/n from b (in E3).
Clearly, (83,93), with the development {Gi}mn=l’ satisfies the lemma.

Lemma 5. If there exists a Moore space (S,Q) satisfying the hypothesis of

Lemma 4 then there exists a Moore space (S ) satisfying the conclusion
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of Lemma 4 and, in addition, is embedded in a normal, connected, locally

connected, arcwise connected Moore space (S4 )} such that if each of P

994
and Q is a point of S3 and R is a fegion in (84,94) then there is a closed,

connected, separable subset N of R which separates P from Q in (84,94).

Proof. Consider the space (S3,Q3) of Lemma 4. If W is a set such that

W= §3 and W does not intersect S, and for each positive integer n, Cn

3

denotes a circle with radius 1/n such that no Cn intersects S3 or W, then

for each element w of W, let C =W X Cn' There is a reversible trans-
>

formation T from W onto S3. If T(w) = P, then with each point P of S3

there is associated an infinite sequence of circles Cw 1,CW 2,"'. For
’ ’

each i and each point P of S let Cw . = cP.

3’ ,1 i

Remark: 1In the space (SZ,QZ) each point of K is an end point of some arc
of G'. The set K is embedded in (53,93). Suppose that each of x and y
is a point of K and [x,yl is that arc of G' having end points x and y.

There exist, in [x,y],,two subsets: A = 2 A and B = z B where
X X,¥,1

»¥s1

Ax,y,l’Ax,y,Z"" converges sequentially and monotonically to x and

. R X
Bx,y,l’Bx,y,Z"" converges sequentially and monotonically to y. If Ci

is a circle, associated under T with x, and KX is that subset of K



consist of those points each of which is an end point of an arc having
the other end point x, there is a homeomorphic image of C?, in E3, which

contains A v,i in its boundary, for each y in Kx' For simplicity and
b b

X
notational purposes, it is assumed here that Ci has that property itself.
Thus, in the following treatment, if x is in SZ’ each Ci contains points

of S3 as described above.

Let 94 denote the topology induced by the following definition of
region: The statement that the point set R is a region of Gi means that

either

i) there is a point P of S, and a positive integer i such that

3

i > n and P belongs to a connected open (in the subspace Ci

of E3) subset of (Ci'—— S -CE) which has length (in E3) less

3
than 1/i, or
ii) there exist points x and y of K, an arc [x,y] of G having x
and y as end points, a positive integer i and a point Ax v,i
P4 ]

such that P belongs to R if and only if either

(a) P = Ax,y,i’ or

(b) P is a point of an open connected subset of [x,y] which

contains AY v i and is of length less than 1/n, or

5

(c) P is a point of an open connected subset of C? which

contains AX v,i and is of length less than 1/n, or
1] b

(d) there exists a point Ax or Bx,y,j which belongs to

)Y 3
the open connecetd set satisfying (b) such that P is a

point of an open connected subset of some ¢’ which con-

3

tains A or Bx,y,j and is of length less than 1/n, or

X,V,]
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iii) there exists a region g of G_ such that P belongs to R if and

=}

only if either

(a) P is a point of g, or

(b) there exist a point x of g and a positive integer 1 > n
such that P is a point of C:’ or

(c) there is a point x of S3 such that for some j, C? intersects
g at only one poiﬁt, say y, and P is a point of an open
connected subset of C? which contains y and has length

less than 1/n.

It follows that (84,94) is a Moore space with developmentv{Gﬁ}mn=l.
That it has the properties described in the lemma follows as in [2, Theorem
1] and from the property that if P is a point of 53 and R is a region of
(54,94) then there exists a closed, connected, separable subset N of R

(in particular, some C?) such that 84——-N = H + U where H and U are mutually

separated, H is a subset of R and S4 — R is a subset of U.

Lemma 6. Suppose that (84,94) is a Moore space satisfying Lemma 5. Then

for each positive integer n > 4, there exists a normal, arcwise connected,

such that (S ,Q )

locally connected, nonmetrizable Moore space (Sn+1’Qn+l) uch th n’ o’

is embedded in (S ), no point of Sn+1 is a limit point of Sn in

n+l’Qn+1

(Sn+1’9n+l)’ and it is true that if each of P and x is a point of §_ and

R is a region in (S ) containing P then there exists a closed,

nt1?Sn41

connected, separable subset N of R which separates P from x in (Sn+l’9n+1)'

Proof. The construction only need by indicated. Consider (54,94) of Lemma



5. Each point of S4 — S3 is a point of some C? for some point x of 53

and some positive integer j. Indeed, no point of S4 ——-53 is a limit point

of any subset of S3 in (34,94). Using the constructive device of Lemma 5.

P

-— S, a sequence Ci,CZ,...

4 3

. . )
of homeomorphic images of circles such that Ci intersects a connected

there may be associated with each point P of S

subset of C?.(SA—-S3) in two and only two points.

Definition of (SS,QS): The statement that P is a point of S5 means that
P is a point of S4 or P is a point of some Ci for some point y in S4—-S3
and some positive integer i. The statement that the point set R is a

. . 5 . . . 4 .
region in Gn means that there exists a region g in Gn such that the point

z belongs to R if and only if either

(a) there exist a point x of S4 ——-83 and a positive integer j and

a connected subset C of C? ——-C?.S which has length less than

4

1/n and z is a point of C, or
(b) i) z is a point of g, or
ii) there exists a point x of (84——-53).g and a positive
integer i > n such that z is a point of C?, or

iii) there exists a point x of S,—— S, which is not in g but

4 3

oy . . X .
such that, for some positive integer j. Cj intersects
g (this intersection consists of only one point) and z

p.o . .
is a point of a connected subset of Cj which contains

C?.g and has length less than 1/n.

Using an argument similar to that of the preceding lemma, it follows

that (SS,QS) meets the conditions of the lemma.
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Indeed, it is readily seen that (SS’QS) may be embedded in a space (S6,Q6)
in a similar fashion, meeting the conditions of the lemma. The lemma fol-
lows from a formal induction which only repeats the #ibove described con-

struction.

Theorem. If Conjecture A is true then each normal, Eeparable Moore space

is metrizable.

Proof. Assume there exists a normal, separable, nonmetrizable Moore space
and consider the sequence (Sl,Ql), (82,92),... given by the preceding
lemmas. Let S = .f Si and consider the space (S,Q) where { is the tc
pology induced b;—ihe following definition of region: The statement that

the point set R of Gn is a region means there exist a positive integer k
and a sequence Rk’Rk+l’Rk+2"" such that:

+i
i) for each i, Rk+1 is a region of GE 1 in (Sk+1’9k+l)’

ii) = Rk+i for each i,

Rk+i+l'sk+i
iii) Rk+i does not intersect Sk+i—1’ and

iv) Zk R, = R.

Using an argument quite similar to that employed_in [2, Theorem 1] or

{10, Theorem 4], it follows that (S,Q) is a normal, nonmetrizable, connected,
arcwise connected Moore space. That (S,2) is not separable follows from

the construction of (S3,Q3). Indeed, each (Sn,Qn) contains uncountably

many mutually exclusive domains if n > 3. The construction of the space
(S,%) was such that if each of P and x is a point and R is a region con-
taining P then there exists a closed, separable, connected set (a topological
copy of some circle in the construction) which separates P from x. This

would deny the conjecture and the theorem is proved.
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